Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets.
نویسندگان
چکیده
Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, < 1 mm), which are later egested within their faecal pellets. These pellets are a source of food for marine organisms, and contribute to the oceanic vertical flux of particulate organic matter as part of the biological pump. The effects of microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL(-1)) and natural prey (∼1650 algae mL(-1)) the copepod Calanus helgolandicus egested faecal pellets with significantly (P < 0.001) reduced densities, a 2.25-fold reduction in sinking rates, and a higher propensity for fragmentation. We further show that microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.
منابع مشابه
From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea
Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zoo...
متن کاملComparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles.
We compare the nature of copepod outfluxes of nonliving matter, the factors controlling their rate and their fate, and finally their role, particularly their relative importance in the carbon and nitrogen cycle. Copepods release dissolved matter through excretion and respiration and particulate matter through production of faecal pellets, carcasses, moults, and dead eggs. Excretion liberates se...
متن کاملProduction, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite
Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind21 h21 and 3.8 pellets ind21 h21 and was significantly higher with T. weissflogii than w...
متن کاملImportance of copepod carcasses versus faecal pellets in the upper water column of an oligotrophic area
Downward flux of zooplankton faecal pellets and carcasses was studied during and after the spring bloom in an oligotrophic coastal area of the Western Mediterranean using a ‘swimmer-excluding’ sediment trap. Zooplankton detritus retrieved in the trap were comprised of cylindrical faecal pellets (from mesoand macrozooplankton) and copepod carcasses with a respective carbon flux of 0.05 e2.69 mg ...
متن کاملBallast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria
We analyzed size-specific dry mass, sinking velocity, and apparent diffusivity in field-sampled marine snow, laboratory-made aggregates formed by diatoms or coccolithophorids, and small and large zooplankton fecal pellets with naturally varying content of ballast materials. Apparent diffusivity was measured directly inside aggregates and large (millimeter-long) fecal pellets using microsensors....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 50 6 شماره
صفحات -
تاریخ انتشار 2016